java字节码

基础概念

JVM是一个基于栈的架构,每一个线程都有一个用来存储帧集(frames)JVM 栈,每次方法被调用的时候(包含main方法),在栈上会分配一个新的帧。这个帧包含局部变量数组,操作数栈,常量池指针,程序计数器,动态链接,返回地址。 从概念来说,帧的情况如下图所示 java字节码_2020-04-25-12-51-54.png java字节码_2020-04-23-10-46-50.png

变量

局部变量

局部变量的数组也称为局部变量表,包括方法的参数,它也可以用来存储局部变量的值。首先存放的参数,从地址 0 开始编码。如果帧是一个构造器或者实例方法,this引用讲存储在地址 0 中,地址 1 存放第一个参数,地址 2 存放第二个参数,依次类推。如果帧是一个静态方法,第一个方法参数会存在地址 0 中,地址 1 存放第二个参数,依次类推。

局部变量数组的大小是在编译期决定的,它取决于局部变量和正常方法参数的数量和大小。操作栈是一个用于pushpop 值的后进先出的栈,它的大小也是在编译器决定的。一些操作码指令将值push 到操作栈,其它的操作码从栈上获取操作数,操作它们,并将值push 回去。操作栈常用来接收方法的返回值。

局部变量可以是以下几种类型:

char long short int double float 引用 返回地址

除了longdouble类型,每个变量都只占用局部变量区中的一个变量槽(slot),而longdouble只所以会占用两个变量槽(slot),因为longdouble是 64 位的。

当一个新的变量创建时,操作数栈(Operand stack)会存储这个新变量的值。然后这个变量会被存储到局部变量表中对应的位置上。如果这个变量不是基础类型的话,局部变量槽存的就是一个引用,这个引用指向堆中的一个对象。

比如

1
int i = 5;

编译后就变成了

1
2
0: bipush      5 //用来将一个字节作为整型数字压入操作数栈中,在这里5就会被压入操作数栈上。
2: istore_0 //这是istore_这组指令集(译注:严格来说,这个应该叫做操作码,opcode ,指令是指操作码加上对应的操作数,oprand。不过操作码一般作为指令的助记符,这里统称为指令)中的一条,这组指令是将一个整型数字存储到局部变量中。n代表的是局部变量区中的位置,并且只能是0,1,2,3。再多的话只能用另一条指令istore了,这条指令会接受一个操作数,对应的是局部变量区中的位置信息。

这条指令执行的时候,内存布局是这样的: java字节码_2020-04-23-10-47-55.png

每个方法都包含一个局部变量表,如果这段代码在一个方法里面的话,你会在方法的局部变量表中发现如下信息 java字节码_2020-04-23-10-48-09.png

类字段

java 类里面的字段作为类对象实例的一部分,存储在堆里(类变量存储在对应类对象里)。关于字段的信息会添加到类的field_info 数组里,像下面这样

java字节码_2020-04-23-10-48-26.png
java字节码_2020-04-23-10-48-26.png

另外如果变量被初始化了,那么初始化的字节码会添加到构造方法里。 下面这段代码编译之后:

1
2
3
public class SimpleClass {
public int simpleField = 100;
}

如果你用 javap 进行反编译,这个被添加到了 field_info 数组里的字段就会多了一段描述:

1
2
3
public int simpleField;
Signature: I
flags: ACC_PUBLIC

初始化变量的字节码会被加到构造方法里,像下面这样:

1
2
3
4
5
6
7
8
9
10
11
public SimpleClass();
Signature: ()V
flags: ACC_PUBLIC
Code:
stack=2, locals=1, args_size=1
0: aload_0
1: invokespecial #1 // Method java/lang/Object."<init>":()V
4: aload_0
5: bipush 100
7: putfield #2 // Field simpleField:I
10: return

上述代码执行的时候内存里面是这样的: java字节码_2020-04-23-10-48-45.png

这里的 putfield 指令的操作数引用的常量池里的第二个位置,JVM 会为每个类型维护一个常量池,运行时的数据结构有点类似一个符号表,尽管它包含的信息更多。java 的字节码操作需要对应的数据,但是这些数据太大了,存储在字节码里不合适,它们都被存储在常量池里,而字节码包含一个常量池的引用,当类文件生成的时候,其中一块就是常量池

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
Constant pool:
#1 = Methodref #4.#16 // java/lang/Object."<init>":()V
#2 = Fieldref #3.#17 // SimpleClass.simpleField:I
#3 = Class #13 // SimpleClass
#4 = Class #19 // java/lang/Object
#5 = Utf8 simpleField
#6 = Utf8 I
#7 = Utf8 <init>
#8 = Utf8 ()V
#9 = Utf8 Code
#10 = Utf8 LineNumberTable
#11 = Utf8 LocalVariableTable
#12 = Utf8 this
#13 = Utf8 SimpleClass
#14 = Utf8 SourceFile
#15 = Utf8 SimpleClass.java
#16 = NameAndType #7:#8 // "<init>":()V
#17 = NameAndType #5:#6 // simpleField:I
#18 = Utf8 LSimpleClass;
#19 = Utf8 java/lang/Object

常量字段(类常量)

带有final标记的常量字段在class文件里会被标记成ACC_FINAL.

1
2
3
public class SimpleClass {
public int simpleField = 100;
}

字段的描述信息会标记成ACC_FINAL:

1
2
3
4
public static final int simpleField = 100;
Signature: I
flags: ACC_PUBLIC, ACC_FINAL
ConstantValue: int 100

对应的初始化代码并不变:

1
2
3
4: aload_0
5: bipush 100
7: putfield #2 // Field simpleField:I

静态变量

带有static修饰符的静态变量则会被标记成ACC_STATIC

1
2
3
public static int simpleField;
Signature: I
flags: ACC_PUBLIC, ACC_STATIC

不过在实例的构造方法中却再也找不到对应的初始化代码了。因为static变量会在类的构造方法中进行初始化,并且它用的是putstatic指令而不是putfiled

1
2
3
4
5
6
7
8
static {};
Signature: ()V
flags: ACC_STATIC
Code:
stack=1, locals=0, args_size=0
0: bipush 100
2: putstatic #2 // Field simpleField:I
5: return

动态链接

每个栈帧都包含一个指向运行时常量池中该栈帧所属方法的引用,持有该引用是为了支持方法调用过程中的动态连接。

动态分派在 Java 中被大量使用,使用频率及其高,如果在每次动态分派的过程中都要重新在类的方法元数据中搜索合适的目标的话就可能影响到执行效率,因此 JVM 在类的方法区中建立虚方法表(virtual method table)来提高性能。每个类中都有一个虚方法表,表中存放着各个方法的实际入口。如果某个方法在子类中没有被重写,那子类的虚方法表中该方法的地址入口和父类该方法的地址入口一样,即子类的方法入口指向父类的方法入口。如果子类重写父类的方法,那么子类的虚方法表中该方法的实际入口将会被替换为指向子类实现版本的入口地址。
那么虚方法表什么时候被创建?虚方法表会在类加载的连接阶段被创建并开始初始化,类的变量初始值准备完成之后,JVM 会把该类的方法表也初始化完毕。

程序计数器

决定当前执行的指令

示例

对于一个简单的类我们分析一下其字节码

1
2
3
4
5
6
7
public class Test {
private String employeeName;

public String employeeName(){
return this.employeeName;
}
}

查看其字节码

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
Classfile /Users/li/Downloads/Test.class
Last modified Mar 15, 2018; size 309 bytes
MD5 checksum 4553b41dee731dd099687198deb75de7
Compiled from "Test.java"
public class Test
minor version: 0
major version: 52
flags: ACC_PUBLIC, ACC_SUPER
Constant pool:
#1 = Methodref #4.#15 // java/lang/Object."<init>":()V
#2 = Fieldref #3.#16 // Test.name:Ljava/lang/String;
#3 = Class #17 // Test
#4 = Class #18 // java/lang/Object
#5 = Utf8 name
#6 = Utf8 Ljava/lang/String;
#7 = Utf8 <init>
#8 = Utf8 ()V
#9 = Utf8 Code
#10 = Utf8 LineNumberTable
#11 = Utf8 employeeName
#12 = Utf8 ()Ljava/lang/String;
#13 = Utf8 SourceFile
#14 = Utf8 Test.java
#15 = NameAndType #7:#8 // "<init>":()V
#16 = NameAndType #5:#6 // name:Ljava/lang/String;
#17 = Utf8 Test
#18 = Utf8 java/lang/Object
{
java.lang.String name;
descriptor: Ljava/lang/String;
flags:

public Test();
descriptor: ()V
flags: ACC_PUBLIC
Code:
stack=1, locals=1, args_size=1
0: aload_0
1: invokespecial #1 // Method java/lang/Object."<init>":()V
4: return
LineNumberTable:
line 1: 0

public java.lang.String employeeName();
descriptor: ()Ljava/lang/String;
flags: ACC_PUBLIC
Code:
stack=1, locals=1, args_size=1
0: aload_0
1: getfield #2 // Field name:Ljava/lang/String;
4: areturn
LineNumberTable:
line 4: 0
}
SourceFile: "Test.java"

这个方法(line 44)的字节码有三个操作码组成。

  1. 第一个操作码 aload_0,用于将局部变量表中索引为 0 的变量的值推送到操作栈上。前面提到过,局部变量表可以用来为方法传递参数的,构造器和实例方法的 this 引用总是存放在局部变量表的地址 0 处,this 引用必须入栈,因为方法需要访问实例的数据,名称和类。
  2. 第二个操作码 getfield,用于从对象中提取字段。当该操作码执行的时候,操作栈顶的值就会弹出(pop),然后#2 就用来在类运行时常量池中构建一个用于存放字段 name 引用地址的索引,当这个引用被提取时,它会被推送到操作栈上。
  3. 第三个操作码 areturn,返回一个来自方法的引用。比较特殊的是,areturn 的执行会导致操作栈顶的值,name 字段的 引用都会被弹出,然后推送到调用方法的操作栈。

employeeName 的方法相当简单,在考虑一个更复杂的例子之前,我们需要检查每一个操作码左边的值。在 employeeName 的方法的字节码中,这些值是 0,1,4。每个方法都有一个对应的字节码数组。这些值对应每个操作码和它们在参数数组的索引,一些操作码含有参数,这些参数会占据字节数组的空间。aload_0 没有参数,自然而然就占据一个字节,因此,下一个操作码 getfield,就在位置 1 上,然而 areturn 在位置 4 上,因为 getfield 操作码和他的参数占据了位置 1,2,3。位置 1 被操作码 getfield 使用,位置 2,3 被用于存放参数,这些参数用于构成在类运行时常量池中存放值的地方的一个索引。下面的图,展示了 employeeName 的方法的字节码数数组看起来的样子 java字节码_2020-04-23-10-50-00.png 实际上,字节码数组包含代表指令的字节。使用一个 16 进制的编辑器查看 class 文件,可能看到字节码数组中有下面的值 java字节码_2020-04-23-10-50-44.png

通过字节码分析synchronized方法和synchronized代码块的区别

1
2
3
4
5
6
7
8
9
10
public synchronized int top1()
{
return intArr[0];
}
public int top2()
{
synchronized (this) {
return intArr[0];
}
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
Method int top1()
0 aload_0 //将局部变量表中索引为0的对象引用this入栈。

1 getfield #6 <Field int intArr[]>
//弹出对象引用this,将访问常量池的intArr对象引用入栈。

4 iconst_0 //将0入栈。
5 iaload //弹出栈顶的两个值,将intArr中索引为0的值入栈。

6 ireturn //弹出栈顶的值,将其压入调用方法的操作栈,并退出。


Method int top2()
0 aload_0 //将局部变量表中索引为0的对象引用this入栈。
1 astore_2 //弹出this引用,存放到局部变量表中索引为2的地方。
2 aload_2 //将this引用入栈。
3 monitorenter //弹出this引用,获取对象的监视器。

4 aload_0 //开始进入同步块。将this引用压入局部变量表索引为0的地方。

5 getfield #6 <Field int intArr[]>
//弹出this引用,压入访问常量池的intArr引用。

8 iconst_0 //压入0。
9 iaload //弹出顶部的两个值,压入intArr索引为0的值。

10 istore_1 //弹出值,将它存放到局部变量表索引为1的地方。

11 jsr 19 //压入下一个操作码(14)的地址,并跳转到位置19。
14 iload_1 //压入局部变量表中索引为1的值。

15 ireturn //弹出顶部的值,并将其压入到调用方法的操作栈中,退出。

16 aload_2 //同步块结束。将this引用压入到局部变量表索引为2的地方。

17 monitorexit //弹出this引用,退出监视器。

18 athrow //弹出this引用,抛出异常。

19 astore_3 //弹出返回地址(14),并将其存放到局部变量表索引为3的地方。

20 aload_2 //将this引用压入到局部变量索引为2的地方。

21 monitorexit //弹出this引用,并退出监视器。

22 ret 3 //从局部变量表索引为3的值(14)指示的地方返回。
Exception table: //如果在位置4(包括4)和位置16(排除16)中出现异常,则跳转到位置16.
from to target type
4 16 16 any

top2 比 top1 大,执行还慢,是因为 top2 采取的同步和异常处理方式。注意到 top1 采用 synchronized 方法修饰符,这不会产生额外的字节码。相反 top2 在方法体内使用 synchronized 同步代码块,会产生 monitorenter 和 monitorexit 操作码的字节码,还有额外的用于处理异常的字节码。如果执行到一个同步锁的块(一个监视器)内部时,抛出了一个异常,这个锁要保证在退出同步代码块前被释放。top1 的实现要比 top2 的效率高一些,这能获取一丁点的性能提升。

当 synchronized 方法修饰符出现的时候,锁的获取和释放不是通过 monitorenter 和 monitorexit 操作码来实现的,而是在 JVM 调用一个方法时,它检查 ACC_SYNCHRONIZED 属性的标识。如果有这个标识,正在执行的线程将会先获取一个锁,调用方法然后在方法返回时释放锁。如果同步方法抛出异常,在异常离开方法前会自动释放锁。

常用字节码指令集

Note that any referenced "value" refers to a 32-bit int as per the Java instruction set.

Mnemonic Opcode (in hex) Opcode (in binary) Other bytes [count]: [operand labels] Stack [before]→[after] Description
(no name) cb-fd these values are currently unassigned for opcodes and are reserved for future use
aaload 32 0011 0010 arrayref, index → value load onto the stack a reference from an array
aastore 53 0101 0011 arrayref, index, value → store into a reference in an array
aconst_null 01 0000 0001 → null push a null reference onto the stack
aload 19 0001 1001 1: index → objectref load a reference onto the stack from a local variable #index
aload_0 2a 0010 1010 → objectref load a reference onto the stack from local variable 0
aload_1 2b 0010 1011 → objectref load a reference onto the stack from local variable 1
aload_2 2c 0010 1100 → objectref load a reference onto the stack from local variable 2
aload_3 2d 0010 1101 → objectref load a reference onto the stack from local variable 3
anewarray bd 1011 1101 2: indexbyte1, indexbyte2 count → arrayref create a new array of references of length count and component type identified by the class reference index (indexbyte1 << 8 + indexbyte2) in the constant pool
areturn b0 1011 0000 objectref → [empty] return a reference from a method
arraylength be 1011 1110 arrayref → length get the length of an array
astore 3a 0011 1010 1: index objectref → store a reference into a local variable #index
astore_0 4b 0100 1011 objectref → store a reference into local variable 0
astore_1 4c 0100 1100 objectref → store a reference into local variable 1
astore_2 4d 0100 1101 objectref → store a reference into local variable 2
astore_3 4e 0100 1110 objectref → store a reference into local variable 3
athrow bf 1011 1111 objectref → [empty], objectref throws an error or exception (notice that the rest of the stack is cleared, leaving only a reference to the Throwable)
baload 33 0011 0011 arrayref, index → value load a byte or Boolean value from an array
bastore 54 0101 0100 arrayref, index, value → store a byte or Boolean value into an array
bipush 10 0001 0000 1: byte → value push a byte onto the stack as an integer value
breakpoint ca 1100 1010 reserved for breakpoints in Java debuggers; should not appear in any class file
caload 34 0011 0100 arrayref, index → value load a char from an array
castore 55 0101 0101 arrayref, index, value → store a char into an array
checkcast c0 1100 0000 2: indexbyte1, indexbyte2 objectref → objectref checks whether an objectref is of a certain type, the class reference of which is in the constant pool at index (indexbyte1 << 8 + indexbyte2)
d2f 90 1001 0000 value → result convert a double to a float
d2i 8e 1000 1110 value → result convert a double to an int
d2l 8f 1000 1111 value → result convert a double to a long
dadd 63 0110 0011 value1, value2 → result add two doubles
daload 31 0011 0001 arrayref, index → value load a double from an array
dastore 52 0101 0010 arrayref, index, value → store a double into an array
dcmpg 98 1001 1000 value1, value2 → result compare two doubles
dcmpl 97 1001 0111 value1, value2 → result compare two doubles
dconst_0 0e 0000 1110 → 0.0 push the constant 0.0 (a double) onto the stack
dconst_1 0f 0000 1111 → 1.0 push the constant 1.0 (a double) onto the stack
ddiv 6f 0110 1111 value1, value2 → result divide two doubles
dload 18 0001 1000 1: index → value load a double value from a local variable #index
dload_0 26 0010 0110 → value load a double from local variable 0
dload_1 27 0010 0111 → value load a double from local variable 1
dload_2 28 0010 1000 → value load a double from local variable 2
dload_3 29 0010 1001 → value load a double from local variable 3
dmul 6b 0110 1011 value1, value2 → result multiply two doubles
dneg 77 0111 0111 value → result negate a double
drem 73 0111 0011 value1, value2 → result get the remainder from a division between two doubles
dreturn af 1010 1111 value → [empty] return a double from a method
dstore 39 0011 1001 1: index value → store a double value into a local variable #index
dstore_0 47 0100 0111 value → store a double into local variable 0
dstore_1 48 0100 1000 value → store a double into local variable 1
dstore_2 49 0100 1001 value → store a double into local variable 2
dstore_3 4a 0100 1010 value → store a double into local variable 3
dsub 67 0110 0111 value1, value2 → result subtract a double from another
dup 59 0101 1001 value → value, value duplicate the value on top of the stack
dup2 5c 0101 1100 {value2, value1} → {value2, value1}, {value2, value1} duplicate top two stack words (two values, if value1 is not double nor long; a single value, if value1 is double or long)
dup2_x1 5d 0101 1101 value3, {value2, value1} → {value2, value1}, value3, {value2, value1} duplicate two words and insert beneath third word (see explanation above)
dup2_x2 5e 0101 1110 {value4, value3}, {value2, value1} → {value2, value1}, {value4, value3}, {value2, value1} duplicate two words and insert beneath fourth word
dup_x1 5a 0101 1010 value2, value1 → value1, value2, value1 insert a copy of the top value into the stack two values from the top. value1 and value2 must not be of the type double or long.
dup_x2 5b 0101 1011 value3, value2, value1 → value1, value3, value2, value1 insert a copy of the top value into the stack two (if value2 is double or long it takes up the entry of value3, too) or three values (if value2 is neither double nor long) from the top
f2d 8d 1000 1101 value → result convert a float to a double
f2i 8b 1000 1011 value → result convert a float to an int
f2l 8c 1000 1100 value → result convert a float to a long
fadd 62 0110 0010 value1, value2 → result add two floats
faload 30 0011 0000 arrayref, index → value load a float from an array
fastore 51 0101 0001 arrayref, index, value → store a float in an array
fcmpg 96 1001 0110 value1, value2 → result compare two floats
fcmpl 95 1001 0101 value1, value2 → result compare two floats
fconst_0 0b 0000 1011 → 0.0f push 0.0f on the stack
fconst_1 0c 0000 1100 → 1.0f push 1.0f on the stack
fconst_2 0d 0000 1101 → 2.0f push 2.0f on the stack
fdiv 6e 0110 1110 value1, value2 → result divide two floats
fload 17 0001 0111 1: index → value load a float value from a local variable #index
fload_0 22 0010 0010 → value load a float value from local variable 0
fload_1 23 0010 0011 → value load a float value from local variable 1
fload_2 24 0010 0100 → value load a float value from local variable 2
fload_3 25 0010 0101 → value load a float value from local variable 3
fmul 6a 0110 1010 value1, value2 → result multiply two floats
fneg 76 0111 0110 value → result negate a float
frem 72 0111 0010 value1, value2 → result get the remainder from a division between two floats
freturn ae 1010 1110 value → [empty] return a float
fstore 38 0011 1000 1: index value → store a float value into a local variable #index
fstore_0 43 0100 0011 value → store a float value into local variable 0
fstore_1 44 0100 0100 value → store a float value into local variable 1
fstore_2 45 0100 0101 value → store a float value into local variable 2
fstore_3 46 0100 0110 value → store a float value into local variable 3
fsub 66 0110 0110 value1, value2 → result subtract two floats
getfield b4 1011 0100 2: indexbyte1, indexbyte2 objectref → value get a field value of an object objectref, where the field is identified by field reference in the constant pool index (indexbyte1 << 8 + indexbyte2)
getstatic b2 1011 0010 2: indexbyte1, indexbyte2 → value get a static field value of a class, where the field is identified by field reference in the constant pool index (indexbyte1 << 8 + indexbyte2)
goto a7 1010 0111 2: branchbyte1, branchbyte2 [no change] goes to another instruction at branchoffset (signed short constructed from unsigned bytes branchbyte1 << 8 + branchbyte2)
goto_w c8 1100 1000 4: branchbyte1, branchbyte2, branchbyte3, branchbyte4 [no change] goes to another instruction at branchoffset (signed int constructed from unsigned bytes branchbyte1 << 24 + branchbyte2 << 16 + branchbyte3 << 8 + branchbyte4)
i2b 91 1001 0001 value → result convert an int into a byte
i2c 92 1001 0010 value → result convert an int into a character
i2d 87 1000 0111 value → result convert an int into a double
i2f 86 1000 0110 value → result convert an int into a float
i2l 85 1000 0101 value → result convert an int into a long
i2s 93 1001 0011 value → result convert an int into a short
iadd 60 0110 0000 value1, value2 → result add two ints
iaload 2e 0010 1110 arrayref, index → value load an int from an array
iand 7e 0111 1110 value1, value2 → result perform a bitwise AND on two integers
iastore 4f 0100 1111 arrayref, index, value → store an int into an array
iconst_0 03 0000 0011 → 0 load the int value 0 onto the stack
iconst_1 04 0000 0100 → 1 load the int value 1 onto the stack
iconst_2 05 0000 0101 → 2 load the int value 2 onto the stack
iconst_3 06 0000 0110 → 3 load the int value 3 onto the stack
iconst_4 07 0000 0111 → 4 load the int value 4 onto the stack
iconst_5 08 0000 1000 → 5 load the int value 5 onto the stack
iconst_m1 02 0000 0010 → -1 load the int value −1 onto the stack
idiv 6c 0110 1100 value1, value2 → result divide two integers
if_acmpeq a5 1010 0101 2: branchbyte1, branchbyte2 value1, value2 → if references are equal, branch to instruction at branchoffset (signed short constructed from unsigned bytes branchbyte1 << 8 + branchbyte2)
if_acmpne a6 1010 0110 2: branchbyte1, branchbyte2 value1, value2 → if references are not equal, branch to instruction at branchoffset(signed short constructed from unsigned bytes branchbyte1 << 8 + branchbyte2)
if_icmpeq 9f 1001 1111 2: branchbyte1, branchbyte2 value1, value2 → if ints are equal, branch to instruction at branchoffset (signed short constructed from unsigned bytes branchbyte1 << 8 + branchbyte2)
if_icmpge a2 1010 0010 2: branchbyte1, branchbyte2 value1, value2 → if value1 is greater than or equal to value2, branch to instruction at branchoffset (signed short constructed from unsigned bytes branchbyte1 << 8 + branchbyte2)
if_icmpgt a3 1010 0011 2: branchbyte1, branchbyte2 value1, value2 → if value1 is greater than value2, branch to instruction at branchoffset(signed short constructed from unsigned bytes branchbyte1 << 8 + branchbyte2)
if_icmple a4 1010 0100 2: branchbyte1, branchbyte2 value1, value2 → if value1 is less than or equal to value2, branch to instruction at branchoffset (signed short constructed from unsigned bytes branchbyte1 << 8 + branchbyte2)
if_icmplt a1 1010 0001 2: branchbyte1, branchbyte2 value1, value2 → if value1 is less than value2, branch to instruction at branchoffset(signed short constructed from unsigned bytes branchbyte1 << 8 + branchbyte2)
if_icmpne a0 1010 0000 2: branchbyte1, branchbyte2 value1, value2 → if ints are not equal, branch to instruction at branchoffset (signed short constructed from unsigned bytes branchbyte1 << 8 + branchbyte2)
ifeq 99 1001 1001 2: branchbyte1, branchbyte2 value → if value is 0, branch to instruction at branchoffset (signed short constructed from unsigned bytes branchbyte1 << 8 + branchbyte2)
ifge 9c 1001 1100 2: branchbyte1, branchbyte2 value → if value is greater than or equal to 0, branch to instruction at branchoffset (signed short constructed from unsigned bytes branchbyte1 << 8 + branchbyte2)
ifgt 9d 1001 1101 2: branchbyte1, branchbyte2 value → if value is greater than 0, branch to instruction at branchoffset (signed short constructed from unsigned bytes branchbyte1 << 8 + branchbyte2)
ifle 9e 1001 1110 2: branchbyte1, branchbyte2 value → if value is less than or equal to 0, branch to instruction at branchoffset(signed short constructed from unsigned bytes branchbyte1 << 8 + branchbyte2)
iflt 9b 1001 1011 2: branchbyte1, branchbyte2 value → if value is less than 0, branch to instruction at branchoffset (signed short constructed from unsigned bytes branchbyte1 << 8 + branchbyte2)
ifne 9a 1001 1010 2: branchbyte1, branchbyte2 value → if value is not 0, branch to instruction at branchoffset (signed short constructed from unsigned bytes branchbyte1 << 8 + branchbyte2)
ifnonnull c7 1100 0111 2: branchbyte1, branchbyte2 value → if value is not null, branch to instruction at branchoffset (signed short constructed from unsigned bytes branchbyte1 << 8 + branchbyte2)
ifnull c6 1100 0110 2: branchbyte1, branchbyte2 value → if value is null, branch to instruction at branchoffset (signed short constructed from unsigned bytes branchbyte1 << 8 + branchbyte2)
iinc 84 1000 0100 2: index, const [No change] increment local variable #index by signed byte const
iload 15 0001 0101 1: index → value load an int value from a local variable #index
iload_0 1a 0001 1010 → value load an int value from local variable 0
iload_1 1b 0001 1011 → value load an int value from local variable 1
iload_2 1c 0001 1100 → value load an int value from local variable 2
iload_3 1d 0001 1101 → value load an int value from local variable 3
impdep1 fe 1111 1110 reserved for implementation-dependent operations within debuggers; should not appear in any class file
impdep2 ff 1111 1111 reserved for implementation-dependent operations within debuggers; should not appear in any class file
imul 68 0110 1000 value1, value2 → result multiply two integers
ineg 74 0111 0100 value → result negate int
instanceof c1 1100 0001 2: indexbyte1, indexbyte2 objectref → result determines if an object objectref is of a given type, identified by class reference index in constant pool (indexbyte1 << 8 + indexbyte2)
invokedynamic ba 1011 1010 4: indexbyte1, indexbyte2, 0, 0 [arg1, [arg2 ...]] → result invokes a dynamic method and puts the result on the stack (might be void); the method is identified by method reference index in constant pool (indexbyte1 << 8 + indexbyte2)
invokeinterface b9 1011 1001 4: indexbyte1, indexbyte2, count, 0 objectref, [arg1, arg2, ...] → result invokes an interface method on object objectref and puts the result on the stack (might be void); the interface method is identified by method reference index in constant pool (indexbyte1 << 8 + indexbyte2)
invokespecial b7 1011 0111 2: indexbyte1, indexbyte2 objectref, [arg1, arg2, ...] → result invoke instance method on object objectref and puts the result on the stack (might be void); the method is identified by method reference index in constant pool (indexbyte1 << 8 + indexbyte2)
invokestatic b8 1011 1000 2: indexbyte1, indexbyte2 [arg1, arg2, ...] → result invoke a static method and puts the result on the stack (might be void); the method is identified by method reference index in constant pool (indexbyte1 << 8 + indexbyte2)
invokevirtual b6 1011 0110 2: indexbyte1, indexbyte2 objectref, [arg1, arg2, ...] → result invoke virtual method on object objectref and puts the result on the stack (might be void); the method is identified by method reference index in constant pool (indexbyte1 << 8 + indexbyte2)
ior 80 1000 0000 value1, value2 → result bitwise int OR
irem 70 0111 0000 value1, value2 → result logical int remainder
ireturn ac 1010 1100 value → [empty] return an integer from a method
ishl 78 0111 1000 value1, value2 → result int shift left
ishr 7a 0111 1010 value1, value2 → result int arithmetic shift right
istore 36 0011 0110 1: index value → store int value into variable #index
istore_0 3b 0011 1011 value → store int value into variable 0
istore_1 3c 0011 1100 value → store int value into variable 1
istore_2 3d 0011 1101 value → store int value into variable 2
istore_3 3e 0011 1110 value → store int value into variable 3
isub 64 0110 0100 value1, value2 → result int subtract
iushr 7c 0111 1100 value1, value2 → result int logical shift right
ixor 82 1000 0010 value1, value2 → result int xor
jsr a8 1010 1000 2: branchbyte1, branchbyte2 → address jump to subroutine at branchoffset (signed short constructed from unsigned bytes branchbyte1 << 8 + branchbyte2) and place the return address on the stack
jsr_w c9 1100 1001 4: branchbyte1, branchbyte2, branchbyte3, branchbyte4 → address jump to subroutine at branchoffset (signed int constructed from unsigned bytes branchbyte1 << 24 + branchbyte2 << 16 + branchbyte3 << 8 + branchbyte4) and place the return address on the stack
l2d 8a 1000 1010 value → result convert a long to a double
l2f 89 1000 1001 value → result convert a long to a float
l2i 88 1000 1000 value → result convert a long to a int
ladd 61 0110 0001 value1, value2 → result add two longs
laload 2f 0010 1111 arrayref, index → value load a long from an array
land 7f 0111 1111 value1, value2 → result bitwise AND of two longs
lastore 50 0101 0000 arrayref, index, value → store a long to an array
lcmp 94 1001 0100 value1, value2 → result push 0 if the two longs are the same, 1 if value1 is greater than value2, -1 otherwise
lconst_0 09 0000 1001 → 0L push 0L (the number zero with type long) onto the stack
lconst_1 0a 0000 1010 → 1L push 1L (the number one with type long) onto the stack
ldc 12 0001 0010 1: index → value push a constant #index from a constant pool (String, int, float, Class, java.lang.invoke.MethodType, or java.lang.invoke.MethodHandle) onto the stack
ldc2_w 14 0001 0100 2: indexbyte1, indexbyte2 → value push a constant #index from a constant pool (double or long) onto the stack (wide index is constructed as indexbyte1 << 8 + indexbyte2)
ldc_w 13 0001 0011 2: indexbyte1, indexbyte2 → value push a constant #index from a constant pool (String, int, float, Class, java.lang.invoke.MethodType, or java.lang.invoke.MethodHandle) onto the stack (wide index is constructed as indexbyte1 << 8 + indexbyte2)
ldiv 6d 0110 1101 value1, value2 → result divide two longs
lload 16 0001 0110 1: index → value load a long value from a local variable #index
lload_0 1e 0001 1110 → value load a long value from a local variable 0
lload_1 1f 0001 1111 → value load a long value from a local variable 1
lload_2 20 0010 0000 → value load a long value from a local variable 2
lload_3 21 0010 0001 → value load a long value from a local variable 3
lmul 69 0110 1001 value1, value2 → result multiply two longs
lneg 75 0111 0101 value → result negate a long
lookupswitch ab 1010 1011 8+: <0–3 bytes padding>, defaultbyte1, defaultbyte2, defaultbyte3, defaultbyte4, npairs1, npairs2, npairs3, npairs4, match-offset pairs... key → a target address is looked up from a table using a key and execution continues from the instruction at that address
lor 81 1000 0001 value1, value2 → result bitwise OR of two longs
lrem 71 0111 0001 value1, value2 → result remainder of division of two longs
lreturn ad 1010 1101 value → [empty] return a long value
lshl 79 0111 1001 value1, value2 → result bitwise shift left of a long value1 by int value2 positions
lshr 7b 0111 1011 value1, value2 → result bitwise shift right of a long value1 by int value2 positions
lstore 37 0011 0111 1: index value → store a long value in a local variable #index
lstore_0 3f 0011 1111 value → store a long value in a local variable 0
lstore_1 40 0100 0000 value → store a long value in a local variable 1
lstore_2 41 0100 0001 value → store a long value in a local variable 2
lstore_3 42 0100 0010 value → store a long value in a local variable 3
lsub 65 0110 0101 value1, value2 → result subtract two longs
lushr 7d 0111 1101 value1, value2 → result bitwise shift right of a long value1 by int value2 positions, unsigned
lxor 83 1000 0011 value1, value2 → result bitwise XOR of two longs
monitorenter c2 1100 0010 objectref → enter monitor for object ("grab the lock" – start of synchronized() section)
monitorexit c3 1100 0011 objectref → exit monitor for object ("release the lock" – end of synchronized() section)
multianewarray c5 1100 0101 3: indexbyte1, indexbyte2, dimensions count1, [count2,...] → arrayref create a new array of dimensions dimensions of type identified by class reference in constant pool index (indexbyte1 << 8 + indexbyte2); the sizes of each dimension is identified by count1, [count2, etc.]
new bb 1011 1011 2: indexbyte1, indexbyte2 → objectref create new object of type identified by class reference in constant pool index (indexbyte1 << 8 + indexbyte2)
newarray bc 1011 1100 1: atype count → arrayref create new array with count elements of primitive type identified by atype
nop 00 0000 0000 [No change] perform no operation
pop 57 0101 0111 value → discard the top value on the stack
pop2 58 0101 1000 {value2, value1} → discard the top two values on the stack (or one value, if it is a double or long)
putfield b5 1011 0101 2: indexbyte1, indexbyte2 objectref, value → set field to value in an object objectref, where the field is identified by a field reference index in constant pool (indexbyte1 << 8 + indexbyte2)
putstatic b3 1011 0011 2: indexbyte1, indexbyte2 value → set static field to value in a class, where the field is identified by a field reference index in constant pool (indexbyte1 << 8 + indexbyte2)
ret a9 1010 1001 1: index [No change] continue execution from address taken from a local variable #index(the asymmetry with jsr is intentional)
return b1 1011 0001 → [empty] return void from method
saload 35 0011 0101 arrayref, index → value load short from array
sastore 56 0101 0110 arrayref, index, value → store short to array
sipush 11 0001 0001 2: byte1, byte2 → value push a short onto the stack as an integer value
swap 5f 0101 1111 value2, value1 → value1, value2 swaps two top words on the stack (note that value1 and value2 must not be double or long)
tableswitch aa 1010 1010 16+: [0–3 bytes padding], defaultbyte1, defaultbyte2, defaultbyte3, defaultbyte4, lowbyte1, lowbyte2, lowbyte3, lowbyte4, highbyte1, highbyte2, highbyte3, highbyte4, jump offsets... index → continue execution from an address in the table at offset index
wide c4 1100 0100 3/5: opcode, indexbyte1, indexbyte2 or iinc, indexbyte1, indexbyte2, countbyte1, countbyte2 [same as for corresponding instructions] execute opcode, where opcode is either iload, fload, aload, lload, dload, istore, fstore, astore, lstore, dstore, or ret, but assume the indexis 16 bit; or execute iinc, where the index is 16 bits and the constant to increment by is a signed 16 bit short

描述符

描述符的作用是用来描述字段的数据类型、方法的参数列表(包括数量、类型以及顺序)和返回值。根据描述符规则,基本数据类型(byte、char、double、float、int、long、short、boolean)以及代表无返回值的 void 类型都用一个大写字符来表示,而对象类型则用字符 L 加对象的全限定名来表示,详见下表:

标志符 含义
B 基本数据类型 byte
C 基本数据类型 char
D 基本数据类型 double
F 基本数据类型 float
I 基本数据类型 int
J 基本数据类型 long
S 基本数据类型 short
Z 基本数据类型 boolean
V 基本数据类型 void
L 对象类型,如 Ljava/lang/Object
[* 数组类型,如 [Ljava/lang/Object